Example 10: Bidimensional Fuzzy Entropy
Import an image of a Mandelbrot fractal as a matrix.
X = ExampleData('mandelbrot_Mat');
figure('Color','k'),
imshow(X,[],'InitialMagnification',500),
colormap('hot')
Calculate the bidimensional fuzzy entropy in trits (logarithm base 3) with a template
matrix of size [8 x 5], and a time delay (tau
) of 2 using a 'linear'
fuzzy function with
distances linearly normalised to the range [0, 1]:
\[f(x) = exp(- \frac{x - x_{min}}{x_{max} - x_{min}})\]
FE2D = FuzzEn2D(X, 'm', [8 5], 'tau', 2, 'Fx', 'linear', 'r', 0, 'Logx', 3)
>>> FE2D =
0.0016