Cross Entropies
Functions for estimating the entropy between two univariate time series.
The following functions also form the cross-entropy method used by multiscale cross-entropy functions.
- XApEn(Sig1, Sig2, varargin)
XApEn estimates the cross-approximate entropy between two univariate data sequences.
[XAp, Phi] = XApEn(Sig1, Sig2)
Returns the cross-approximate entropy estimates (
XAp) and the log-average number of matched vectors (Phi) form= [0,1,2], estimated for the data sequences contained inSig1andSig2using the default parameters: embedding dimension = 2, time delay = 1, radius distance threshold = 0.2*SDpooled(Sig1,``Sig2``), logarithm = naturalNOTE:
XApEnis direction-dependent. Thus, theSig1is used as
the template data sequence, and
Sig2is the matching sequence.[XAp, Phi] = XApEn(Sig1, Sig2, name, value, …)
Returns the cross-approximate entropy estimates (
XAp) between the data sequences contained inSig1andSig2using the specified name/value pair arguments:m- Embedding Dimension, a positive integer [default: 2]tau- Time Delay, a positive integer [default: 1]r- Radius Distance Threshold, a positive scalar [default: 0.2*SDpooled(Sig1,``Sig2``)]Logx- Logarithm base, a positive scalar [default: natural]
- See also:
XSampEn, XFuzzEn, XMSEn, ApEn, SampEn, MSEn
- References:
- [1] Steven Pincus and Burton H. Singer,
“Randomness and degrees of irregularity.” Proceedings of the National Academy of Sciences 93.5 (1996): 2083-2088.
- [2] Steven Pincus,
“Assessing serial irregularity and its implications for health.” Annals of the New York Academy of Sciences 954.1 (2001): 245-267.
- XCondEn(Sig1, Sig2, varargin)
XCondEn estimates the corrected cross-conditional entropy between two univariate data sequences.
[XCond, SEw, SEz] = XCondEn(Sig1, Sig2)
Returns the corrected cross-conditional entropy estimates (
XCond) and the corresponding Shannon entropies (m: SEw,m+1: SEz) form= [1,2] estimated for the data sequences contained inSig1andSig2using the default parameters: embedding dimension = 2, time delay = 1, number of symbols = 6, logarithm = naturalNote:
XCondEnis direction-dependent. Therefore, the order of the data sequencesSig1andSig2matters. IfSig1is sequence ‘y’, andSig2is sequence ‘u’, thenXCondis the amount of information carried by y(i) when the pattern u(i) is found.
[XCond, SEw, SEz] = XCondEn(Sig1, Sig2, name, value, …)
Returns the corrected cross-conditional entropy estimates (
XCond) for the data sequences contained inSigusing the specified name/value pair arguments:m- Embedding Dimension, an integer > 1 [default: 2]tau- Time Delay, a positive integer [default: 1]c- Number of symbols, an integer > 1 [default: 6]Logx- Logarithm base, a positive scalar [default: natural]Norm- Normalisation ofXCondvalue, a boolean value:[false] no normalisation - [default]
[true] normalises w.r.t cross-Shannon entropy.
- See also:
XFuzzEn, XSampEn, XApEn, XPermEn, CondEn, XMSEn
- References:
- [1] Alberto Porta, et al.,
“Conditional entropy approach for the evaluation of the coupling strength.” Biological cybernetics 81.2 (1999): 119-129.
- XDistEn(Sig1, Sig2, varargin)
XDistEn estimates the cross-distribution entropy between two univariate data sequences.
[XDist, Ppi] = XDistEn(Sig1, Sig2)
Returns the cross-distribution entropy estimate (
XDist) and the corresponding distribution probabilities (Ppi) estimated between the data sequences contained inSig1andSig2using the default parameters: embedding dimension = 2, time delay = 1, binning method ='Sturges', logarithm = base 2, normalisation = w.r.t number of histogram bins[XDist, Pi] = XDistEn(Sig1, Sig2, name, value, …)
Returns the cross-distribution entropy estimate (
XDist) estimated beween the data sequences contained inSig1andSig2using the specified name/value pair arguments:m- Embedding Dimension, a positive integer [default: 2]tau- Time Delay, a positive integer [default: 1]Bins- Histogram bin selection method for distance distribution, an integer > 1 indicating the number of bins, or one of the following strings: {'sturges','sqrt','rice','doanes'} [default:'sturges']Logx- Logarithm base, a positive scalar [default: 2] enter 0 for natural logNorm- Normalisation ofXDistvalue, a boolean value:[false] no normalisation.
[true] normalises w.r.t # of histogram bins [default]
- See also:
XSampEn, XApEn, XPermEn, XCondEn, DistEn, DistEn2D, XMSEn.
- References:
- [1] Yuanyuan Wang and Pengjian Shang,
“Analysis of financial stock markets through the multiscale cross-distribution entropy based on the Tsallis entropy.” Nonlinear Dynamics 94.2 (2018): 1361-1376.
- XFuzzEn(Sig1, Sig2, varargin)
XFuzzEn estimates the cross-fuzzy entropy between two univariate data sequences.
[XFuzz, Ps1, Ps2] = XFuzzEn(Sig1, Sig2)
Returns the cross-fuzzy entropy estimates (
XFuzz) and the average fuzzy distances (m: Ps1,m+1: Ps2) form= [1,2] estimated for the data sequences contained inSig1andSig2, using the default parameters: embedding dimension = 2, time delay = 1, fuzzy function (Fx) ='default', fuzzy function paramters (r) = [0.2, 2], logarithm = natural[XFuzz, Ps1, Ps2] = XFuzzEn(Sig1, Sig2, name, value, …)
Returns the cross-fuzzy entropy estimates (
XFuzz) for dimensions = [1, …,m] estimated for the data sequences inSig1andSig2using the specified name/value pair arguments:m- Embedding Dimension, a positive integer [default: 2]tau- Time Delay, a positive integer [default: 1]Fx- Fuzzy function name, one of the following strings: {'sigmoid','modsampen','default','gudermannian','bell','triangular','trapezoidal1','trapezoidal2','z_shaped','gaussian','constgaussian'}r- Fuzzy function parameters, a 1 element scalar or a 2 element vector of positive values. Therparameters for each fuzzy function are defined as follows: (default: [.2 2])- sigmoid:
r(1) = divisor of the exponential argument
r(2) = value subtracted from argument (pre-division)
- modsampen:
r(1) = divisor of the exponential argument
r(2) = value subtracted from argument (pre-division)
- default:
r(1) = divisor of the exponential argument
r(2) = argument exponent (pre-division)
- gudermannian:
r = a scalar whose value is the numerator of
argument to gudermannian function: GD(x) = atan(tanh(r/x)). GD(x) is normalised to have a maximum value of 1.
- [DEPRICATED] linear:
r = an integer value. When
r == 0, the
argument of the exponential function is normalised between [0 1]. When
r == 1, the minimuum value of the exponential argument is set to 0.- triangular:
r = a positive scalar whose value is the threshold (corner point) of the triangular function.
- trapezoidal1:
r = a positive scalar whose value corresponds to the upper (2r) and lower (r) corner points of the trapezoid.
- trapezoidal2:
r(1) = a value corresponding to the upper corner point of the trapezoid.
r(2) = a value corresponding to the lower corner point of the trapezoid.
- z_shaped:
r = a scalar whose value corresponds to the upper (2r) and lower (r) corner points of the z-shape.
- bell:
r(1) = divisor of the distance value
r(2) = exponent of generalized bell-shaped function
- gaussian:
r = a scalar whose value scales the slope of the Gaussian curve.
- constgaussian:
r = a scalar whose value defines the lower threshod and shape of the Gaussian curve.
Logx- Logarithm base, a positive scalar [default: natural]
For further information on the name/value paire arguments, see the EntropyHub guide
- See also:
FuzzEn, XSampEn, XApEn, FuzzEn2D, XMSEn, MSEn
- References:
- [1] Hong-Bo Xie, et al.,
“Cross-fuzzy entropy: A new method to test pattern synchrony of bivariate time series.” Information Sciences 180.9 (2010): 1715-1724.
- [2] Hamed Azami, et al.
“Fuzzy Entropy Metrics for the Analysis of Biomedical Signals: Assessment and Comparison” IEEE Access 7 (2019): 104833-104847
- XK2En(Sig1, Sig2, varargin)
XK2En estimates the cross-Kolmogorov (K2) entropy between two univariate data sequences.
[XK2, Ci] = XK2En(Sig1, Sig2)
Returns the cross-Kolmogorov entropy estimates (
XK2) and the correlation integrals (Ci) form= [1,2] estimated between the data sequences contained inSig1andSig2using the default parameters: embedding dimension = 2, time delay = 1, distance threshold (r) = 0.2*SDpooled(Sig1,``Sig2``), logarithm = natural[XK2, Ci] = XK2En(Sig, name, value, …)
Returns the cross-Kolmogorov entropy estimates (
XK2) estimated between the data sequences contained inSig1andSig2using the specified name/value pair arguments:m- Embedding Dimension, a positive integer [default: 2]tau- Time Delay, a positive integer [default: 1]r- Radius Distance Threshold, a positive scalar [default: 0.2*SDpooled(Sig1,``Sig2``)]Logx- Logarithm base, a positive scalar [default: natural]
- See also:
XSampEn, XFuzzEn, XApEn, K2En, XMSEn, XDistEn.
- References:
- [1] Matthew W. Flood,
“XK2En - EntropyHub Project” (2021) https://github.com/MattWillFlood/EntropyHub
- XPermEn(Sig1, Sig2, varargin)
XPermEn estimates the cross-permutation entropy between two univariate data sequences.
[XPerm] = XPermEn(Sig1, Sig2)
Returns the cross-permuation entropy estimates (
XPerm) estimated betweeen the data sequences contained inSig1andSig2using the default parameters: embedding dimension = 3, time delay = 1, logarithm = base 2,[XPerm] = XPermEn(Sig1, Sig2, name, value, …)
Returns the permutation entropy estimates (
XPerm) for the data sequences contained inSig1andSig2using the specified name/value pair arguments:m- Embedding Dimension, an integer > 2 [default: 3] **Note:XPermis undefined for embedding dimensions < 3.tau- Time Delay, a positive integer [default: 1]Logx- Logarithm base, a positive scalar [default: 2] (enter 0 for natural log).
- See also:
PermEn, XApEn, XSampEn, XFuzzEn, XMSEn
- References:
- [1] Wenbin Shi, Pengjian Shang, and Aijing Lin,
“The coupling analysis of stock market indices based on cross-permutation entropy.” Nonlinear Dynamics 79.4 (2015): 2439-2447.
- XSampEn(Sig1, Sig2, varargin)
XSampEn estimates the cross-sample entropy between two univariate data sequences.
[XSamp, A, B] = XSampEn(Sig1, Sig2)
Returns the cross-sample entropy estimates (
XSamp) and the number of matched vectors (m: B,m+1: A) for m = [0,1,2] estimated for the two univariate data sequences contained inSig1andSig2using the default parameters: embedding dimension = 2, time delay = 1, radius distance threshold = 0.2*SDpooled(Sig1,``Sig2``), logarithm = natural[XSamp, A, B, (Vcp, Ka, Kb)] = XSampEn(Sig1, Sig2, …, Vcp = true)
If
Vcp == True, an additional vector(Vcp, Ka, Kb)is returned with the cross-sample entropy estimates (XSamp) and the number of matched state vectors (m: B,m+1: A).(Vcp, Ka, Kb)contains the variance of the conditional probabilities (Vcp), i.e. CP = A/B, and the number of overlapping matching vector pairs of lengths m+1 (Ka) and m (Kb), respectively. NoteVcpis undefined for the zeroth embedding dimension (m = 0) and due to the computational demand, will take substantially more time to return function outputs. See Appendix B in [2] for more info.[XSamp, A, B] = XSampEn(Sig1, Sig2, name, value, …)
Returns the cross-sample entropy estimates (
XSamp) for dimensions [0,1, …,m] estimated between the data sequences inSig1andSig2using the specified name/value pair arguments:m- Embedding Dimension, a positive integer [default: 2]tau- Time Delay, a positive integer [default: 1]r- Radius Distance Threshold, a positive scalar [default: 0.2*SDpooled(Sig1,``Sig2``)]Logx- Logarithm base, a positive scalar [default: natural]Vcp- Option to return variance of conditional probabilities and the number of overlapping matching vector pairs, a boolean [default: false]
- See also:
XFuzzEn, XApEn, SampEn, SampEn2D, XMSEn, ApEn
- References:
- [1] Joshua S Richman and J. Randall Moorman.
“Physiological time-series analysis using approximate entropy and sample entropy.” American Journal of Physiology-Heart and Circulatory Physiology (2000)
- [2] Douglas E Lake, Joshua S Richman, M.P. Griffin, J. Randall Moorman
“Sample entropy analysis of neonatal heart rate variability.” American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 283, no. 3 (2002): R789-R797.
- XSpecEn(Sig1, Sig2, varargin)
XSpecEn estimates the cross-spectral entropy between two univariate data sequences.
[XSpec, BandEn] = XSpecEn(Sig1, Sig2)
Returns the cross-spectral entropy estimate (
XSpec) of the full cross- spectrum and the within-band entropy (BandEn) estimated between the data sequences contained inSig1andSig2using the default parameters: N-point FFT = 2 * max length ofSig1/Sig2, normalised band edge frequencies = [0 1], logarithm = natural, normalisation = w.r.t # of spectrum/band frequency values.[XSpec, BandEn] = XSpecEn(Sig1, Sig2, name, value, …)
Returns the cross-spectral entropy (
XSpec) and the within-band entropy (BandEn) estimate between the data sequences contained inSig1andSig2using the following specified name/value pair arguments:N- Resolution of spectrum (N-point FFT), an integer > 1Freqs- Normalised band edge frequencies, a scalar in range [0 1] where 1 corresponds to the Nyquist frequency (Fs/2). *Note: When no band frequencies are entered,BandEn == SpecEnLogx- Logarithm base, a positive scalar [default: natural]Norm- Normalisation ofXSpecvalue, a boolean:[false] no normalisation.
[true] normalises w.r.t # of frequency values within the spectrum/band [default]
- See also:
SpecEn, fft, XDistEn, periodogram, XSampEn, XApEn
- References:
- [1] Matthew W. Flood,
“XSpecEn - EntropyHub Project” (2021) https://github.com/MattWillFlood/EntropyHub