Example 6: Multiscale [Increment] Entropy
Import a signal of uniformly distributed pseudorandom integers in the range [1,8] and create a multiscale entropy object with the following parameters:
EnType = IncrEn()
, embedding dimension = 3, a quantifying resolution = 6, normalization = true.
X = ExampleData('randintegers');
Mobj = MSobject('IncrEn', 'm', 3, 'R', 6, 'Norm', true)
>>> Mobj = struct with fields:
Func: @IncrEn
m: 3
R: 6
Norm: 1
Calculate the multiscale increment entropy over 5 temporal scales using the modified graining procedure where,
\[y_j^{(\tau)} =\frac{1}{\tau } \sum_{i=\left(j-1\right)\tau +1}^{j\tau }x{_i} , 1 <= j <= \frac{N}{\tau}\]
MSx = MSEn(X, Mobj, 'Scales', 5, 'Methodx', 'modified')
. . . . . .
>>> MSx = 1×5
4.2719 4.3059 4.2863 4.2494 4.2773