Example 7: Refined Multiscale [Sample] Entropy
Import a signal of uniformly distributed pseudorandom integers in the range [1, 8] and create a multiscale entropy object with the following parameters:
EnType = SampEn()
, embedding dimension = 4, radius threshold = 1.25
X = EH.ExampleData('randintegers');
Mobj = EH.MSobject('SampEn', m = 4, r = 1.25)
Mobj.Func
>>> <function EntropyHub._SampEn.SampEn(Sig, m=2, tau=1, r=None, Logx=2.71828)>
Mobj.Kwargs
>>> {'m': 4, 'r': 1.25}
Calculate the refined multiscale sample entropy and the complexity index (Ci
) over 5
temporal scales using a 3rd order Butterworth filter with a normalised corner frequency
of at each temporal scale, where the radius threshold value (r
) specified by Mobj
becomes scaled by the median absolute deviation of the filtered signal at each scale.
MSx, Ci = EH.rMSEn(X, Mobj, Scales = 5, F_Order = 3, F_Num = 0.6, RadNew = 4)
. . . . . .
>>> MSx
array([0.5280, 0.5734, 0.5940, 0.5908, 0.5564])
>>> Ci
2.842518179468045