Example 7: Refined Multiscale [Sample] Entropy
Import a signal of uniformly distributed pseudorandom integers in the range [1, 8] and create a multiscale entropy object with the following parameters:
EnType = SampEn()
, embedding dimension = 4, radius threshold = 1.25
X = ExampleData('randintegers');
Mobj = MSobject('SampEn', 'm', 4, 'r', 1.25)
>>> Mobj = struct with fields:
Func: @SampEn
m: 4
r: 1.2500
Calculate the refined multiscale sample entropy and the complexity index (Ci
) over 5
temporal scales using a 3rd order Butterworth filter with a normalised corner frequency
of at each temporal scale, where the radius threshold value (r
) specified by Mobj
becomes scaled by the median absolute deviation of the filtered signal at each scale.
[MSx, Ci] = rMSEn(X, Mobj, 'Scales', 5, 'F_Order', 3, 'F_Num', 0.6, 'RadNew', 4)
. . . . . .
>>> MSx = 1×5
0.5280 0.5734 0.5939 0.5908 0.5563
Ci = 2.8424