Example 7: Refined Multiscale [Sample] Entropy
Import a signal of uniformly distributed pseudorandom integers in the range [1, 8] and create a multiscale entropy object with the following parameters:
EnType = SampEn(), embedding dimension = 4, radius threshold = 1.25
X = ExampleData('randintegers');
Mobj = MSobject('SampEn', 'm', 4, 'r', 1.25)
>>> Mobj = struct with fields:
Func: @SampEn
m: 4
r: 1.2500
Calculate the refined multiscale sample entropy and the complexity index (Ci) over 5
temporal scales using a 3rd order Butterworth filter with a normalised corner frequency
of at each temporal scale, where the radius threshold value (r) specified by Mobj
becomes scaled by the median absolute deviation of the filtered signal at each scale.
[MSx, Ci] = rMSEn(X, Mobj, 'Scales', 5, 'F_Order', 3, 'F_Num', 0.6, 'RadNew', 4)
. . . . . .
>>> MSx = 1×5
0.5280 0.5734 0.5939 0.5908 0.5563
Ci = 2.8424