Example 11: Multivariate Dispersion Entropy
Import a vector of 4096 uniformly distributed random integers in range [1 8] and convert it to a multivariate set of 4 sequences with 1024 samples each.
X = ExampleData('randintegers')
Data = reshape(X, 1024, 4)
Calculate the multivariate dispersion entropy and reverse dispersion entropy for embedding dimensions (m) = [1,1,2,3], using a 7-symbol transform.
[MDisp, RDE] = MvDispEn(Data, 'm', [1,1,2,3], 'c', 7)
>>> MDisp =
6.9227345
>>> RDE =
0.0009856
Perform the same calculation but normalize the output entropy estimate w.r.t the number of unique dispersion patterns
[MDisp, RDE] = MvDispEn(Data, 'm', [1,1,2,3], 'c', 7, 'Norm', true)
>>> MDisp =
0.508226
>>> RDE =
0.0009856
Compare the results above (Methodx == 'v1'
) with those obtained using the mvDE method (Methodx=='v2'
), returning estimates for each value from 1, …, max(m)
[MDisp, RDE] = MvDispEn(Data, 'm', [1,1,2,3], 'c', 7, 'Norm', true, 'Methodx', 'v2')
>>> MDisp =
0.95439595, 0.94074854, 0.93012334
>>> RDE =
0.02675949, 0.00805324, 0.00201614