Multivariate Multiscale Entropies
Functions for estimating the multivariate multiscale entropy of a multivariate dataset.
Multivariate multiscale entropy can be calculated using any of the Multivariate Entropies:
MvCoSiEn
, MvDispEn
, MvFuzzEn
, MvPermEn
, MvSampEn
.
Important
Multivariate multiscale entropy functions have two positional arguments:
the multivariate dataset,
Data
, a N (>10) x M (>1) matrixthe multiscale entropy object,
Mobj
.
- MSobject(EnType, varargin)
MSobject creates an object to store multiscale entropy parameters.
[Mobj] = MSobject()
Returns a multiscale entropy object (
Mobj
) based on that orignially proposed by Costa et al. (2002) using the following default parameters: EnType ='SampEn'
, embedding dimension = 2, time delay = 1, radius = 0.2*SD(Sig
), logarithm = natural[Mobj] = MSobject(EnType)
Returns a multiscale entropy object using the specified entropy method (
EnType
) and the default parameters for that entropy method. To see the default parameters for a particular entropy method, type: help EnType (e.g.help SampEn
)[Mobj] = MSobject(EnType, name, value, …)
Returns a multiscale entropy object using the specified entropy method (
EnType
) and the name/value parameters for that particular method. To see the default parameters for a particular entropy method, type: help EnType (e.g.help SampEn
)EnType
can be any of the following (case sensitive) entropies:- Base Entropies:
'ApEn'
- Approximate Entropy'SampEn'
- Sample Entropy'FuzzEn'
- Fuzzy Entropy'K2En'
- Kolmogorov Entropy'PermEn'
- Permutation Entropy'CondEn'
- Conditional Entropy'DistEn'
- Distribution Entropy'DispEn'
- Dispersion Entropy'SpecEn'
- Spectral Entropy'SyDyEn'
- Symbolic Dynamic Entropy'IncrEn'
- Increment Entropy'CoSiEn'
- Cosine Similarity Entropy'PhasEn'
- Phase Entropy'SlopEn'
- Slope Entropy'BubbEn'
- Bubble Entropy'GridEn'
- Grid Distribution Entropy'EnofEn'
- Entropy of Entropy'AttnEn'
- Attention Entropy'DivEn'
- Diversity Entropy'RangEn'
- Range Entropy
- Cross Entropies:
'XApEn'
- Cross-Approximate Entropy'XSampEn'
- Cross-Sample Entropy'XFuzzEn'
- Cross-Fuzzy Entropy'XK2En'
- Cross-Kolmogorov Entropy'XPermEn'
- Cross-Permutation Entropy'XCondEn'
- Cross-Conditional Entropy'XDistEn'
- Cross-Distribution Entropy'XSpecEn'
- Cross-Spectral Entropy
- Multivariate Entropies:
'MvSampEn2D'
- Multivariate Sample Entropy'MvFuzzEn2D'
- Multivariate Fuzzy Entropy'MvDispEn2D'
- Multivariate Dispersion Entropy'MvCoSiEn2D'
- Multivariate Cosine Similarity Entropy'MvPermEn2D'
- Multivariate Permutation Entropy
- See also:
MSEn, XMSEn, MvMSEn, cMSEn, rMSEn, hMSEn,rXMSEn, cXMSEn, hXMSEn
The following functions use the multiscale entropy object shown above.
- MvMSEn(Data, Mobj, varargin)
MvMSEn returns the multivariate multiscale entropy of a multivariate dataset.
[MSx, CI] = MvMSEn(Data, Mobj)
Returns a vector of multivariate multiscale entropy values (
MSx
) and the complexity index (CI
) of the data sequencesData
using the parameters specified by the multiscale object (Mobj
) over 3 temporal scales with coarse- graining (default).Caution
By default, the
MvSampEn
andMvFuzzEn
multivariate entropy algorithms estimate entropy values using the “full” method by comparing delay vectors across all possiblem+1
expansions of the embedding space as applied in [1]. These methods are not lower-bounded to 0, like most entropy algorithms, soMvMSEn
may return negative entropy values if the base multivariate entropy function isMvSampEn
andMvFuzzEn
, even for stochastic processes…[MSx,CI] = MvMSEn(Data, Mobj, name, value, …)
Returns a vector of multivariate multiscale entropy values (
MSx
) and the complexity index (CI
) of the data sequencesData
using the parameters specified by the multiscale object (Mobj
) and the following name/value pair arguments:- Scales:
Number of temporal scales, an integer > 1 (default = 3)
- Methodx:
Graining method, one of the following, [default =
'coarse'
] {'coarse'
,``’generalized’, ``'modified'
}
- Plotx:
When
Plotx == true
, returns a plot of the entropy value at each time scale (i.e. the multiscale entropy curve) [default: false]
For further information on multiscale graining procedures, see the EntropyHub guide
- See also:
MSobject, MSEn, cMvMSEn, MvSampEn, MvFuzzEn, MvPermEn, MvDispEn, MvCoSiEn
- References:
- [1] Ahmed Mosabber Uddin, Danilo P. Mandic
“Multivariate multiscale entropy analysis.” IEEE signal processing letters 19.2 (2011): 91-94.
- [2] Madalena Costa, Ary Goldberger, and C-K. Peng,
“Multiscale entropy analysis of complex physiologic time series.” Physical review letters 89.6 (2002): 068102.
- [3] Vadim V. Nikulin, and Tom Brismar,
“Comment on “Multiscale entropy analysis of complex physiologic time series”.” Physical Review Letters 92.8 (2004): 089803.
- [4] Madalena Costa, Ary L. Goldberger, and C-K. Peng.
“Costa, Goldberger, and Peng reply.” Physical Review Letters 92.8 (2004): 089804.
- [5] Madalena Costa, Ary L. Goldberger and C-K. Peng,
“Multiscale entropy analysis of biological signals.” Physical review E 71.2 (2005): 021906.
- [6] Ranjit A. Thuraisingham and Georg A. Gottwald,
“On multiscale entropy analysis for physiological data.” Physica A: Statistical Mechanics and its Applications 366 (2006): 323-332.
- [7] Ahmed Mosabber Uddin, Danilo P. Mandic
“Multivariate multiscale entropy: A tool for complexity analysis of multichannel data.” Physical Review E 84.6 (2011): 061918.
- cMvMSEn(Data, Mobj, varargin)
cMvMSEn returns the composite and refined-composite multivariate multiscale entropy of a multivariate dataset.
[MSx, CI] = cMvMSEn(Data, Mobj)
Returns a vector of composite multivariate multiscale entropy values (
MSx
) and the complexity index (CI
) of the data sequencesData
using the parameters specified by the multiscale object (Mobj
) over 3 temporal scales with coarse-graining (default).Caution
By default, the
MvSampEn
andMvFuzzEn
multivariate entropy algorithms estimate entropy values using the “full” method by comparing delay vectors across all possiblem+1
expansions of the embedding space as applied in [1]. These methods are not lower-bounded to 0, like most entropy algorithms, socMvMSEn
may return negative entropy values if the base multivariate entropy function isMvSampEn
andMvFuzzEn
, even for stochastic processes…[MSx, CI] = cMvMSEn(Data, Mobj, name, value, …)
Returns a vector of composite multivariate multiscale entropy values (
MSx
) and the complexity index (CI
) of the data sequencesData
using the parameters specified by the multiscale object (Mobj
) and the following name/value pair arguments:- Scales:
Number of temporal scales, an integer > 1 (default: 3)
- Refined:
Refined-composite MSEn method.
When
Refined == true
and the entropy function specified byMobj
isMvSampEn
orMvFuzzEn
,cMvMSEn
returns the refined-composite multivariate nmultiscale entropy (rcMSEn). (default: false)- Plotx:
When
Plotx == true
, returns a plot of the entropy value at each time scale (i.e. the multiscale entropy curve) (default: false)
- See also:
MSobject, MSEn, rMSEn, hMSEn, XMSEn, cXMSEn, SampEn, ApEn,
- References:
- [1] Shuen-De Wu, et al.,
“Time series analysis using composite multiscale entropy.” Entropy 15.3 (2013): 1069-1084.
- [2] Shuen-De Wu, et al.,
“Analysis of complex time series using refined composite multiscale entropy.” Physics Letters A 378.20 (2014): 1369-1374.
- [3] Ahmed Mosabber Uddin, Danilo P. Mandic
“Multivariate multiscale entropy: A tool for complexity analysis of multichannel data.” Physical Review E 84.6 (2011): 061918.
- [4] Ahmed Mosabber Uddin, Danilo P. Mandic
“Multivariate multiscale entropy analysis.” IEEE signal processing letters 19.2 (2011): 91-94.
- [5] Azami, Alberto Fernández, Javier Escudero.
“Refined multiscale fuzzy entropy based on standard deviation for biomedical signal analysis.” Medical & biological engineering & computing 55 (2017): 2037-2052.