Multiscale Entropies
Functions for estimating the multiscale entropy of a univariate time series.
Multiscale entropy can be calculated using any of the Base Entropies:
ApEn
, AttnEn
, BubbEn
, CondEn
, CoSiEn
, DistEn
,
DispEn
, DivEn
, EnofEn
, FuzzEn
, GridEn
, IncrEn
, K2En
,
PermEn
, PhasEn
, RangEn
, SampEn
, SlopEn
, SpecEn
, SyDyEn
.
Important
Multiscale cross-entropy functions have two positional arguments:
the data sequence,
Sig
(a vector > 10 elements),the multiscale entropy object,
Mobj
.
- MSobject(EnType, varargin)
MSobject creates an object to store multiscale entropy parameters.
[Mobj] = MSobject()
Returns a multiscale entropy object (
Mobj
) based on that orignially proposed by Costa et al. (2002) using the following default parameters: EnType ='SampEn'
, embedding dimension = 2, time delay = 1, radius = 0.2*SD(Sig
), logarithm = natural[Mobj] = MSobject(EnType)
Returns a multiscale entropy object using the specified entropy method (
EnType
) and the default parameters for that entropy method. To see the default parameters for a particular entropy method, type: help EnType (e.g.help SampEn
)[Mobj] = MSobject(EnType, name, value, …)
Returns a multiscale entropy object using the specified entropy method (
EnType
) and the name/value parameters for that particular method. To see the default parameters for a particular entropy method, type: help EnType (e.g.help SampEn
)EnType
can be any of the following (case sensitive) entropies:- Base Entropies:
'ApEn'
- Approximate Entropy'SampEn'
- Sample Entropy'FuzzEn'
- Fuzzy Entropy'K2En'
- Kolmogorov Entropy'PermEn'
- Permutation Entropy'CondEn'
- Conditional Entropy'DistEn'
- Distribution Entropy'DispEn'
- Dispersion Entropy'SpecEn'
- Spectral Entropy'SyDyEn'
- Symbolic Dynamic Entropy'IncrEn'
- Increment Entropy'CoSiEn'
- Cosine Similarity Entropy'PhasEn'
- Phase Entropy'SlopEn'
- Slope Entropy'BubbEn'
- Bubble Entropy'GridEn'
- Grid Distribution Entropy'EnofEn'
- Entropy of Entropy'AttnEn'
- Attention Entropy'DivEn'
- Diversity Entropy'RangEn'
- Range Entropy
- Cross Entropies:
'XApEn'
- Cross-Approximate Entropy'XSampEn'
- Cross-Sample Entropy'XFuzzEn'
- Cross-Fuzzy Entropy'XK2En'
- Cross-Kolmogorov Entropy'XPermEn'
- Cross-Permutation Entropy'XCondEn'
- Cross-Conditional Entropy'XDistEn'
- Cross-Distribution Entropy'XSpecEn'
- Cross-Spectral Entropy
- Multivariate Entropies:
'MvSampEn2D'
- Multivariate Sample Entropy'MvFuzzEn2D'
- Multivariate Fuzzy Entropy'MvDispEn2D'
- Multivariate Dispersion Entropy'MvCoSiEn2D'
- Multivariate Cosine Similarity Entropy'MvPermEn2D'
- Multivariate Permutation Entropy
- See also:
MSEn, XMSEn, MvMSEn, cMSEn, rMSEn, hMSEn,rXMSEn, cXMSEn, hXMSEn
The following functions use the multiscale entropy object shown above.
- MSEn(Sig, Mobj, varargin)
MSEn returns the multiscale entropy of a univariate data sequence.
[MSx,CI] = MSEn(Sig, Mobj)
Returns a vector of multiscale entropy values (
MSx
) and the complexity index (CI
) of the data sequenceSig
using the parameters specified by the multiscale object (Mobj
) over 3 temporal scales with coarse- graining (default).[MSx,CI] = MSEn(Sig, Mobj, name, value, …)
Returns a vector of multiscale entropy values (
MSx
) and the complexity index (CI
) of the data sequenceSig
using the parameters specified by the multiscale object (Mobj
) and the following name/value pair arguments:Scales
- Number of temporal scales, an integer > 1 (default = 3)Methodx
- Graining method, one of the following: [default ='coarse'
] {'coarse'
,``’generalized’, ``'modified'
,'imf'
,'timeshift'
}RadNew
- Radius rescaling method, an integer in the range [1 4]. When the entropy specified byMobj
isSampEn
orApEn
, RadNew rescales the radius threshold in each sub-sequence at each time scale (Xt). If a radius value (r
) is specified byMobj
, this becomes the rescaling coefficient, otherwise it is set to 0.2 (default). The value ofRadNew
specifies one of the following methods:[1] Standard Deviation - r*std(Xt)
[2] Variance - r*var(Xt)
[3] Mean Absolute Deviation - r*mad(Xt)
[4] Median Absolute Deviation - r*mad(Xt,1)
Plotx
- WhenPlotx == true
, returns a plot of the entropy value at each time scale (i.e. the multiscale entropy curve) [default: false]
For further information on multiscale graining procedures, see the EntropyHub guide
- See also:
MSobject, rMSEn, cMSEn, hMSEn, XMSEn, cXMSEn, hXMSEn, SampEn
- References:
- [1] Madalena Costa, Ary Goldberger, and C-K. Peng,
“Multiscale entropy analysis of complex physiologic time series.” Physical review letters 89.6 (2002): 068102.
- [2] Vadim V. Nikulin, and Tom Brismar,
“Comment on “Multiscale entropy analysis of complex physiologic time series”.” Physical Review Letters 92.8 (2004): 089803.
- [3] Madalena Costa, Ary L. Goldberger, and C-K. Peng.
“Costa, Goldberger, and Peng reply.” Physical Review Letters 92.8 (2004): 089804.
- [4] Madalena Costa, Ary L. Goldberger and C-K. Peng,
“Multiscale entropy analysis of biological signals.” Physical review E 71.2 (2005): 021906.
- [5] Ranjit A. Thuraisingham and Georg A. Gottwald,
“On multiscale entropy analysis for physiological data.” Physica A: Statistical Mechanics and its Applications 366 (2006): 323-332.
- [6] Meng Hu and Hualou Liang,
“Intrinsic mode entropy based on multivariate empirical mode decomposition and its application to neural data analysis.” Cognitive neurodynamics 5.3 (2011): 277-284.
- [7] Anne Humeau-Heurtier
“The multiscale entropy algorithm and its variants: A review.” Entropy 17.5 (2015): 3110-3123.
- [8] Jianbo Gao, et al.,
“Multiscale entropy analysis of biological signals: a fundamental bi-scaling law.” Frontiers in computational neuroscience 9 (2015): 64.
- [9] Paolo Castiglioni, et al.,
“Multiscale Sample Entropy of cardiovascular signals: Does the choice between fixed-or varying-tolerance among scales influence its evaluation and interpretation?.” Entropy 19.11 (2017): 590.
- [10] Tuan D Pham,
“Time-shift multiscale entropy analysis of physiological signals.” Entropy 19.6 (2017): 257.
- [11] Hamed Azami and Javier Escudero,
“Coarse-graining approaches in univariate multiscale sample and dispersion entropy.” Entropy 20.2 (2018): 138.
- [12] Magdalena Costa and Ary Goldberger,
“Generalized multiscale entropy analysis: Application to quantifying the complex volatility of human heartbeat time series” Entropy 17 (2015): 1197–1203
- cMSEn(Sig, Mobj, varargin)
cMSEn returns the composite multiscale entropy of a univariate data sequence.
[MSx, CI] = cMSEn(Sig, Mobj)
Returns a vector of composite multiscale entropy values (
MSx
) for the data sequence (Sig
) using the parameters specified by the multiscale object (Mobj
) using the composite multiscale entropy method (cMSE) over 3 temporal scales.[MSx, CI] = cMSEn(Sig, Mobj, name, value, …)
Returns a vector of composite multiscale entropy values (
MSx
) for the data sequence (Sig
) using the parameters specified by the multiscale object (Mobj
) and the following name/value pair arguments:Scales
- Number of temporal scales, an integer > 1 (default: 3)RadNew
- Radius rescaling method, an integer in the range [1 4]. When the entropy specified byMobj
isSampEn
orApEn
, RadNew rescales the radius threshold in each sub-sequence at each time scale (Xt). If a radius value (r
) is specified byMobj
, this becomes the rescaling coefficient, otherwise it is set to 0.2 (default). The value ofRadNew
specifies one of the following methods:[1] Standard Deviation - r*std(Xt)
[2] Variance - r*var(Xt)
[3] Mean Absolute Deviation - r*mad(Xt)
[4] Median Absolute Deviation - r*mad(Xt,1)
Refined
- Refined-composite MSEn method. WhenRefined == true
and the entropy function specified byMobj
isSampEn
orFuzzEn
,cMSEn
returns the refined-composite multiscale entropy (rcMSEn). (default: false)Plotx
- WhenPlotx == true
, returns a plot of the entropy value at each time scale (i.e. the multiscale entropy curve) (default: false)
- See also:
MSobject, MSEn, rMSEn, hMSEn, XMSEn, cXMSEn, SampEn, ApEn,
- References:
- [1] Madalena Costa, Ary Goldberger, and C-K. Peng,
“Multiscale entropy analysis of complex physiologic time series.” Physical review letters 89.6 (2002): 068102.
- [2] Vadim V. Nikulin, and Tom Brismar,
“Comment on “Multiscale entropy analysis of complex physiologic time series”.” Physical review letters 92.8 (2004): 089803.
- [3] Madalena Costa, Ary L. Goldberger, and C-K. Peng.
“Costa, Goldberger, and Peng reply.” Physical Review Letters 92.8 (2004): 089804.
- [4] Shuen-De Wu, et al.,
“Time series analysis using composite multiscale entropy.” Entropy 15.3 (2013): 1069-1084.
- [5] Shuen-De Wu, et al.,
“Analysis of complex time series using refined composite multiscale entropy.” Physics Letters A 378.20 (2014): 1369-1374.
- [6] Azami, Alberto Fernández, and Javier Escudero.
“Refined multiscale fuzzy entropy based on standard deviation for biomedical signal analysis.” Medical & biological engineering & computing 55 (2017): 2037-2052.
- rMSEn(Sig, Mobj, varargin)
rMSEn returns the refined multiscale entropy of a univariate data sequence.
[MSx,CI] = rMSEn(Sig, Mobj)
Returns a vector of refined multiscale entropy values (
MSx
) and the complexity index (CI
) of the data sequence (Sig
) using the parameters specified by the multiscale object (Mobj
) and the following default parameters:Scales
= 3, Butterworth LPF Order = 6, Butterworth LPF cutoff frequency at scale (T): Fc = 0.5/T. If the entropy function specified byMobj
isSampEn
orApEn
,rMSEn
updates the threshold radius of the data sequence (Xt) at each scale to 0.2*std(Xt) when nor
value is provided byMobj
, or r*std(Xt) ifr
is specified.[MSx,CI] = rMSEn(Sig, Mobj, name, value, …)
Returns a vector of refined multiscale entropy values (
MSx
) and the complexity index (CI
) of the data sequence (Sig
) using the parameters specified by the multiscale object (Mobj
) and the following name/value pair arguments:Scales
- Number of temporal scales, an integer > 1 (default: 3)F_Order
- Butterworth low-pass filter order, a positive integer (default: 6)F_Num
- Numerator of Butterworth low-pass filter cutoff frequency, a scalar value in range [0 <F_Num
< 1]. The cutoff frequency at each scale (T) becomes: Fc =F_Num
/T. (default: 0.5)RadNew
- Radius rescaling method, an integer in the range [1 4]. When the entropy specified byMobj
isSampEn
orApEn
, RadNew rescales the radius threshold in each sub-sequence at each time scale (Xt). If a radius value (r
) is specified byMobj
, this becomes the rescaling coefficient, otherwise it is set to 0.2 (default). The value ofRadNew
specifies one of the following methods:[1] Standard Deviation - r*std(Xt)
[2] Variance - r*var(Xt)
[3] Mean Absolute Deviation - r*mad(Xt)
[4] Median Absolute Deviation - r*mad(Xt,1)
Plotx
- WhenPlotx == true
, returns a plot of the entropy value at each time scale (i.e. the multiscale entropy curve) [default: false]
- See also:
MSobject, MSEn, cMSEn, hMSEn, XMSEn, rXMSEn, SampEn, ApEn
- References:
- [1] Madalena Costa, Ary Goldberger, and C-K. Peng,
“Multiscale entropy analysis of complex physiologic time series.” Physical review letters 89.6 (2002): 068102.
- [2] Vadim V. Nikulin, and Tom Brismar,
“Comment on “Multiscale entropy analysis of complex physiologic time series”.” Physical review letters 92.8 (2004): 089803.
- [3] Madalena Costa, Ary L. Goldberger, and C-K. Peng.
“Costa, Goldberger, and Peng reply.” Physical Review Letters 92.8 (2004): 089804.
- [4] José Fernando Valencia, et al.,
“Refined multiscale entropy: Application to 24-h holter recordings of heart period variability in healthy and aortic stenosis subjects.” IEEE Transactions on Biomedical Engineering 56.9 (2009): 2202-2213.
- [5] Puneeta Marwaha and Ramesh Kumar Sunkaria,
“Optimal selection of threshold value ‘r’for refined multiscale entropy.” Cardiovascular engineering and technology 6.4 (2015): 557-576.
- hMSEn(Sig, Mobj, varargin)
hMSEn returns the hierarchical entropy of a univariate data sequence.
[MSx,Sn,CI] = hMSEn(Sig, Mobj)
Returns a vector of entropy values (
MSx
) calculated at each node in the hierarchical tree, the average entropy value across all nodes at each scale (Sn
), and the complexity index (CI
) of the hierarchical tree (i.e.sum(Sn)
) for the data sequence (Sig
) using the parameters specified by the multiscale object (Mobj
) over 3 temporal scales (default). The entropy values inMSx
are ordered from the root node (S_00) to the Nth subnode at scale T (S_TN): i.e. S_00, S_10, S_11, S_20, S_21, S_22, S_23, S_30, S_31, S_32, S_33, S_34, S_35, S_36, S_37, S_40, … , S_TN. The average entropy values inSn
are ordered in the same way, with the value of the root node given first: i.e. S0, S1, S2, …, ST[MSx,Sn,CI] = hMSEn(Sig, Mobj, name, value, …)
Returns a vector of entropy values (
MSx
) calculated at each node in the hierarchical tree, the average entropy value across all nodes at each scale (Sn
), and the complexity index (CI
) of the entire hierarchical tree for the data sequence (Sig
) using the following name/value pair arguments:Scales
- Number of temporal scales, an integer > 1 (default = 3) At each scale (T), entropy is estimated for 2^(T-1) nodes.RadNew
- Radius rescaling method, an integer in the range [1 4]. When the entropy specified byMobj
isSampEn
orApEn
, RadNew rescales the radius threshold in each sub-sequence at each time scale (Xt). If a radius value (r
) is specified byMobj
, this becomes the rescaling coefficient, otherwise it is set to 0.2 (default). The value ofRadNew
specifies one of the following methods:[1] Standard Deviation - r*std(Xt)
[2] Variance - r*var(Xt)
[3] Mean Absolute Deviation - r*mad(Xt)
[4] Median Absolute Deviation - r*mad(Xt,1)
Plotx
- WhenPlotx == true
, returns a plot of the average entropy value at each time scale (i.e. the multiscale entropy curve) and a hierarchical graph showing the entropy value of each node in the hierarchical tree decomposition. (default: false)
- See also:
MSobject, MSEn, rMSEn, cMSEn, XMSEn, hXMSEn, rXMSEn, cXMSEn
- References:
- [1] Ying Jiang, C-K. Peng and Yuesheng Xu,
“Hierarchical entropy analysis for biological signals.” Journal of Computational and Applied Mathematics 236.5 (2011): 728-742.