Multiscale Cross-Entropies
Functions for estimating the multiscale cross-entropy between two univariate time series.
Just as one can calculate multiscale entropy using any Base entropy, the same functionality is possible with multiscale cross-entropy using any of the Cross Entropies:
XApEn
, XSampEn
, XK2En
, XCondEn
, XPermEn
, XSpecEn
, XDistEn
, XFuzzEn
To do so, we again use the MSobject
function to pass a multiscale object (Mobj
) to the multiscale cross-entropy functions.
Important
Multiscale cross-entropy functions have three positional arguments:
the first data sequence,
Sig1
(a vector > 10 elements),the second data sequence,
Sig2
(a vector > 10 elements),the multiscale entropy object,
Mobj
.
- MSobject(EnType='SampEn', **kwargs)
MSobject creates an object to store multiscale entropy parameters.
[Mobj] = MSobject()
Returns a multiscale entropy object (
Mobj
) based on that originally proposed by Costa et al. using the following default parameters: EnType = ‘SampEn’, embedding dimension = 2, time delay = 1, radius = 0.2*SD(Sig
), logarithm = natural[Mobj] = MSobject(EnType)
Returns a multiscale entropy object using the specified entropy method (
EnType
) and the default parameters for that entropy method. To see the default parameters for a particular entropy method, type: help(EnType) (e.g.help(SampEn)
)[Mobj] = MSobject(EnType, keyword = value, ...)
Returns a multiscale entropy object using the specified entropy method (
EnType
) and the name/value parameters for that particular method. To see the default parameters for a particular entropy method, type: help(EnType) (e.g.help(SampEn)
)EnType
can be any of the following (case sensitive) string names:- Base Entropies:
'ApEn'
:Approximate Entropy
'SampEn'
:Sample Entropy
'FuzzEn'
:Fuzzy Entropy
'K2En'
:Kolmogorov Entropy
'PermEn'
:Permutation Entropy
'CondEn'
:Conditional Entropy
'DistEn'
:Distribution Entropy
'DispEn'
:Dispersion Entropy
'SpecEn'
:Spectral Entropy
'SyDyEn'
:Symbolic Dynamic Entropy
'IncrEn'
:Increment Entropy
'CoSiEn'
:Cosine Similarity Entropy
'PhasEn'
:Phase Entropy
'SlopEn'
:Slope Entropy
'BubbEn'
:Bubble Entropy
'GridEn'
:Grid Distribution Entropy
'EnofEn'
:Entropy of Entropy
'AttnEn'
:Attention Entropy
'DivEn'
:Diversity Entropy
'RangEn'
:Range Entropy
- Cross Entropies:
'XApEn'
:Cross-Approximate Entropy
'XSampEn'
:Cross-Sample Entropy
'XFuzzEn'
:Cross-Fuzzy Entropy
'XK2En'
:Cross-Kolmogorov Entropy
'XPermEn'
:Cross-Permutation Entropy
'XCondEn'
:Cross-Conditional Entropy (corrected)
'XDistEn'
:Cross-Distribution Entropy
'XSpecEn'
:Cross-Spectral Entropy
- Multivariate Entropies:
'MvSampEn'
:Multivariate Sample Entropy
'MvFuzzEn'
:Multivariate Fuzzy Entropy
'MvDispEn'
:Multivariate Dispersion Entropy
'MvCoSiEn'
:Multivariate Cosine Similarity Entropy
'MvPermEn'
:Multivariate Permutation Entropy
- See also:
MSEn
,MvMSEn
,cMSEn
,cMvMSEn
,rMSEn
,hMSEn
,XMSEn
,rXMSEn
,cXMSEn
,hXMSEn
The following functions use the multiscale entropy object shown above.
- XMSEn(Sig1, Sig2, Mbjx, Scales=3, Methodx='coarse', RadNew=0, Plotx=False)
XMSEn returns the multiscale cross-entropy between two univariate data sequences.
MSx, CI = XMSEn(Sig1, Sig2, Mobj)
Returns a vector of multiscale cross-entropy values (
MSx
) and the complexity index (CI
) between the data sequences contained inSig1
andSig2
using the parameters specified by the multiscale object (Mobj
) over 3 temporal scales with coarse-graining (default).MSx, CI = XMSEn(Sig1, Sig2, Mobj, keyword = value, ...)
Returns a vector of multiscale cross-entropy values (
MSx
) and the complexity index (CI
) between the data sequences contained inSig1
andSig2
using the parameters specified by the multiscale object (Mobj
) and the following ‘keyword’ arguments:- Scales:
Number of temporal scales, an integer > 1 [default: 3]
- Methodx:
Graining method, one of the following: [default:
'coarse'
] {'coarse'
,'modified'
,'imf'
,'timeshift'
,'generalized'
}
- RadNew:
Radius rescaling method, an integer in the range [1 4].
When the cross-entropy specified by
Mobj
isXSampEn
orXApEn
, RadNew rescales the radius threshold in each sub-sequence at each time scale (Ykj). If a radius value (r
) is specified byMobj
, this becomes the rescaling coefficient, otherwise it is set to 0.2 (default). The value of RadNew specifies one of the following methods:[1] Pooled Standard Deviation -
r*std(Ykj)
[2] Pooled Variance -
r*var(Ykj)
[3] Mean Absolute Deviation -
r*mad(Ykj)
[4] Median Absolute Deviation -
r*mad(Ykj,1)
- Plotx:
When
Plotx == True
, returns a plot of the entropy value at each time scale (i.e. the multiscale entropy curve) [default: False]
- See also:
MSobject
,XSampEn
,XApEn
,rXMSEn
,cXMSEn
,hXMSEn
,MSEn
- References:
- [1] Rui Yan, Zhuo Yang, and Tao Zhang,
“Multiscale cross entropy: a novel algorithm for analyzing two time series.” 5th International Conference on Natural Computation. Vol. 1, pp: 411-413 IEEE, 2009.
- [2] Madalena Costa, Ary Goldberger, and C-K. Peng,
“Multiscale entropy analysis of complex physiologic time series.” Physical review letters 89.6 (2002): 068102.
- [3] Vadim V. Nikulin, and Tom Brismar,
“Comment on “Multiscale entropy analysis of complex physiologic time series”.” Physical review letters 92.8 (2004): 089803.
- [4] Madalena Costa, Ary L. Goldberger, and C-K. Peng.
“Costa, Goldberger, and Peng reply.” Physical Review Letters 92.8 (2004): 089804.
- [5] Antoine Jamin, et al,
“A novel multiscale cross-entropy method applied to navigation data acquired with a bike simulator.” 41st annual international conference of the IEEE EMBC IEEE, 2019.
- [6] Antoine Jamin and Anne Humeau-Heurtier.
“(Multiscale) Cross-Entropy Methods: A Review.” Entropy 22.1 (2020): 45.
- cXMSEn(Sig1, Sig2, Mbjx, Scales=3, RadNew=0, Refined=False, Plotx=False)
cXMSEn returns the composite (or refined-composite) multiscale cross-entropy between two univariate data sequences.
MSx, CI = cXMSEn(Sig1, Sig2, Mobj)
Returns a vector of composite multiscale cross-entropy values (
MSx
) between two univariate data sequences contained inSig1
andSig2
using the parameters specified by the multiscale object (Mobj
) using the composite multiscale method (cMSE) over 3 temporal scales.MSx, CI = cXMSEn(Sig1, Sig2, Mobj, Refined = True)
Returns a vector of refined-composite multiscale cross-entropy values (
MSx
) for the data sequences (Sig1
,Sig2
) using the parameters specified by the multiscale object (Mobj
) using the refined-composite multiscale entropy method (rcMSE) over 3 temporal scales. WhenRefined == True
, the base entropy method must beXSampEn
orXFuzzEn
. If the entropy method isXSampEn
, cXMSEn employs the method described in [7]. If the entropy method isXFuzzEn
, cXMSEn employs the method described in [8].MSx, CI = cXMSEn(Sig1, Sig2, Mobj, keyword = value, ...)
Returns a vector of composite multiscale cross-entropy values (
MSx
) between the data sequences contained inSig1
andSig2
using the parameters specified by the multiscale object (Mobj) and the following ‘keyword’ arguments:- Scales:
Number of temporal scales, an integer > 1 (default: 3)
- RadNew:
Radius rescaling method, an integer in the range [1 4].
When the cross-entropy specified by
Mobj
isXSampEn
orXApEn
, RadNew rescales the radius threshold in each sub-sequence at each time scale (Ykj). If a radius value (r
) is specified byMobj
, this becomes the rescaling coefficient, otherwise it is set to 0.2 (default). The value of RadNew specifies one of the following methods:[1] Pooled Standard Deviation -
r*std(Ykj)
[2] Pooled Variance -
r*var(Ykj)
[3] Mean Absolute Deviation -
r*mad(Ykj)
[4] Median Absolute Deviation -
r*mad(Ykj,1)
- Refined:
Refined-composite XMSEn method. When
Refined == True
and the cross-entropy function specified by
Mobj
isXSampEn
orXFuzzEn
,cXMSEn
returns the refined-composite multiscale entropy (rcXMSEn) [default: False]- Plotx:
When
Plotx == True
, returns a plot of the entropy value at each time scale (i.e. the multiscale entropy curve) [default: False]
- See also:
MSobject
,XMSEn
,rXMSEn
,hXMSEn
,XSampEn
,XApEn
,MSEn
,cMSEn
,rMSEn
- References:
- [1] Rui Yan, Zhuo Yang, and Tao Zhang,
“Multiscale cross entropy: a novel algorithm for analyzing two time series.” 5th International Conference on Natural Computation. Vol. 1, pp: 411-413 IEEE, 2009.
- [2] Yi Yin, Pengjian Shang, and Guochen Feng,
“Modified multiscale cross-sample entropy for complex time series.” Applied Mathematics and Computation 289 (2016): 98-110.
- [3] Madalena Costa, Ary Goldberger, and C-K. Peng,
“Multiscale entropy analysis of complex physiologic time series.” Physical review letters 89.6 (2002): 068102.
- [4] Antoine Jamin, et al,
“A novel multiscale cross-entropy method applied to navigation data acquired with a bike simulator.” 41st annual international conference of the IEEE EMBC IEEE, 2019.
- [5] Antoine Jamin and Anne Humeau-Heurtier.
“(Multiscale) Cross-Entropy Methods: A Review.” Entropy 22.1 (2020): 45.
- [6] Shuen-De Wu, et al.,
“Time series analysis using composite multiscale entropy.” Entropy 15.3 (2013): 1069-1084.
- [7] Shuen-De Wu, et al.,
“Analysis of complex time series using refined composite multiscale entropy.” Physics Letters A 378.20 (2014): 1369-1374.
- [8] Hamed Azami et al.,
“Refined multiscale fuzzy entropy based on standard deviation for biomedical signal analysis” Med Biol Eng Comput 55 (2017):2037–2052
- hXMSEn(Sig1, Sig2, Mbjx, Scales=3, RadNew=0, Plotx=False)
hXMSEn returns the hierarchical cross-entropy between two univariate data sequences.
MSx, Sn, CI = hXMSEn(Sig1, Sig2, Mobj)
Returns a vector of cross-entropy values (
MSx
) calculated at each node in the hierarchical tree, the average cross-entropy value across all nodes at each scale (Sn
), and the complexity index (CI
) of the hierarchical tree (i.e.sum(Sn)
) between the data sequences contained inSig1
and``Sig2`` using the parameters specified by the multiscale object (Mobj
) over 3 temporal scales (default). The entropy values inMSx
are ordered from the root node (S_00) to the Nth subnode at scale T (S_TN): i.e. S_00, S_10, S_11, S_20, S_21, S_22, S_23, S_30, S_31, S_32, S_33, S_34, S_35, S_36, S_37, S_40, … , S_TN. The average cross-entropy values in Sn are ordered in the same way, with the value of the root node given first: i.e. S0, S1, S2, …, STMSx, Sn, CI = hXMSEn(Sig1, Sig2, Mobj, Keyword = value, ...)
Returns a vector of cross-entropy values (
MSx
) calculated at each node in the hierarchical tree, the average cross-entropy value across all nodes at each scale (Sn
), and the complexity index (CI
) of the entire hierarchical tree between the data sequences contained inSig1
andSig2
using the following keyword arguments:- Scales:
Number of temporal scales, an integer > 1 (default: 3)
- RadNew:
Radius rescaling method, an integer in the range [1 4].
When the cross-entropy specified by
Mobj
isXSampEn
orXApEn
, RadNew rescales the radius threshold in each sub-sequence at each time scale (Ykj). If a radius value (r
) is specified byMobj
, this becomes the rescaling coefficient, otherwise it is set to 0.2 (default). The value of RadNew specifies one of the following methods:[1] Pooled Standard Deviation -
r*std(Ykj)
[2] Pooled Variance -
r*var(Ykj)
[3] Mean Absolute Deviation -
r*mad(Ykj)
[4] Median Absolute Deviation -
r*mad(Ykj,1)
- Plotx:
When
Plotx == True
, returns a plot of the average cross-entropy value at each time scale (i.e. the multiscale cross-entropy curve) and a hierarchical graph showing the cross-entropy value of each node in the hierarchical tree decomposition. (default: False)
- See also:
MSobject
,XMSEn
,rXMSEn
,cXMSEn
,XSampEn
,XApEn
,MSEn
,hMSEn
,rMSEn
,cMSEn
- References:
- [1] Matthew W. Flood,
“hXMSEn - EntropyHub Project” 2021, https://github.com/MattWillFlood/EntropyHub
- [2] Rui Yan, Zhuo Yang, and Tao Zhang,
“Multiscale cross entropy: a novel algorithm for analyzing two time series.” 5th International Conference on Natural Computation. Vol. 1, pp: 411-413 IEEE, 2009.
- [3] Ying Jiang, C-K. Peng and Yuesheng Xu,
“Hierarchical entropy analysis for biological signals.” Journal of Computational and Applied Mathematics 236.5 (2011): 728-742.
- rXMSEn(Sig1, Sig2, Mbjx, Scales=3, F_Order=6, F_Num=0.5, RadNew=0, Plotx=False)
rXMSEn returns the refined multiscale cross-entropy between two univariate data sequences.
MSx, CI = rXMSEn(Sig1, Sig2, Mobj)
Returns a vector of refined multiscale cross-entropy values (
MSx
) and the complexity index (CI
) between the data sequences contained inSig1
andSig2
using the parameters specified by the multiscale object (Mobj
) and the following default parameters: Scales = 3, Butterworth LPF Order = 6, Butterworth LPF cutoff frequency at scale (T): Fc = 0.5/T. If the entropy function specified byMobj
isXSampEn
orXApEn
,rXMSEn
updates the threshold radius of the data sequences at each scale to 0.2*SDpooled(Sig1,Sig2) if nor
value is provided by Mobj, or r*SDpooled(Sig1,Sig2) ifr
is specified.MSx, CI = rXMSEn(Sig1, Sig2, Mobj, keyword = value, ...)
Returns a vector of refined multiscale cross-entropy values (
MSx
) and the complexity index (CI
) between the data sequences contained inSig1
andSig2
using the parameters specified by the multiscale object (Mobj
) and the following ‘keyword’ arguments:- Scales:
Number of temporal scales, an integer > 1 (default: 3)
- F_Order:
Butterworth low-pass filter order, a positive integer (default: 6)
- F_Num:
Numerator of Butterworth low-pass filter cutoff frequency, a scalar value in range [0 <
F_Num
< 1]. The cutoff frequency at each scale (T) becomes: Fc =F_Num
/T. (default: 0.5)
- RadNew:
Radius rescaling method, an integer in the range [1 4].
When the cross-entropy specified by
Mobj
isXSampEn
orXApEn
, RadNew rescales the radius threshold in each sub-sequence at each time scale (Ykj). If a radius value (r
) is specified byMobj
, this becomes the rescaling coefficient, otherwise it is set to 0.2 (default). The value of RadNew specifies one of the following methods:[1] Pooled Standard Deviation -
r*std(Ykj)
[2] Pooled Variance -
r*var(Ykj)
[3] Mean Absolute Deviation -
r*mad(Ykj)
[4] Median Absolute Deviation -
r*mad(Ykj,1)
- Plotx:
When
Plotx == True
, returns a plot of the entropy value at each time scale (i.e. the multiscale entropy curve) [default: False]
- See also:
MSobject
,XMSEn
,cXMSEn
,hXMSEn
,XSampEn
,XApEn
,MSEn
,rMSEn
- References:
- [1] Matthew W. Flood,
“rXMSEn - EntropyHub Project” 2024, https://github.com/MattWillFlood/EntropyHub
- [2] Rui Yan, Zhuo Yang, and Tao Zhang,
“Multiscale cross entropy: a novel algorithm for analyzing two time series.” 5th International Conference on Natural Computation. Vol. 1, pp: 411-413 IEEE, 2009.
- [3] José Fernando Valencia, et al.,
“Refined multiscale entropy: Application to 24-h holter recordings of heart period variability in healthy and aortic stenosis subjects.” IEEE Transactions on Biomedical Engineering 56.9 (2009): 2202-2213.
- [4] Puneeta Marwaha and Ramesh Kumar Sunkaria,
“Optimal selection of threshold value ‘r’ for refined multiscale entropy.” Cardiovascular engineering and technology 6.4 (2015): 557-576.
- [5] Yi Yin, Pengjian Shang, and Guochen Feng,
“Modified multiscale cross-sample entropy for complex time series.” Applied Mathematics and Computation 289 (2016): 98-110.
- [6] Antoine Jamin, et al,
“A novel multiscale cross-entropy method applied to navigation data acquired with a bike simulator.” 41st annual international conference of the IEEE EMBC IEEE, 2019.
- [7] Antoine Jamin and Anne Humeau-Heurtier.
“(Multiscale) Cross-Entropy Methods: A Review.” Entropy 22.1 (2020): 45.